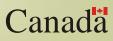
Recommissioning – **Mechanical and Electrical System Optimisation**

Centre de la technologie de l'énergie de CANMET - Varennes

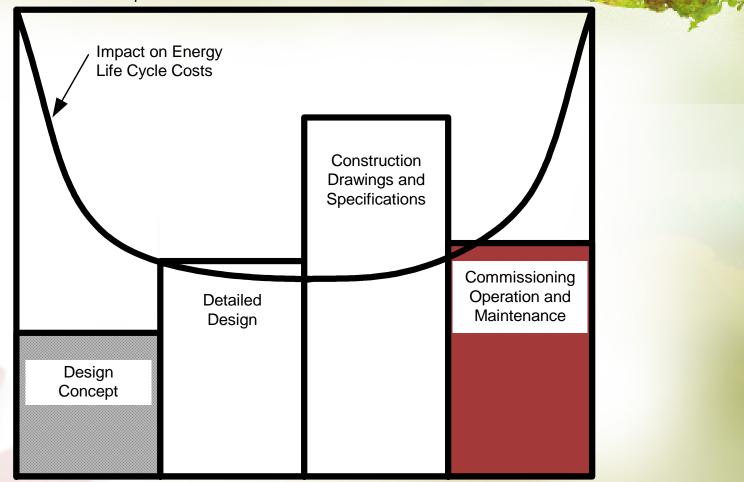
Meli Stylianou

Canada

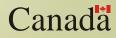

Ressources naturelles Natural Resources Canada

Outline

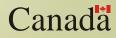
- Building operation
- What is recommissioning
- Why recommissioning
- Recommissioning process
- An Example of recommissioning
- Obstacles to overcome
- ♦ Next steps

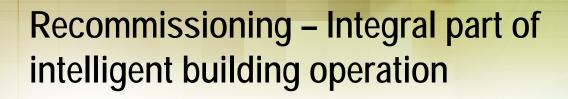


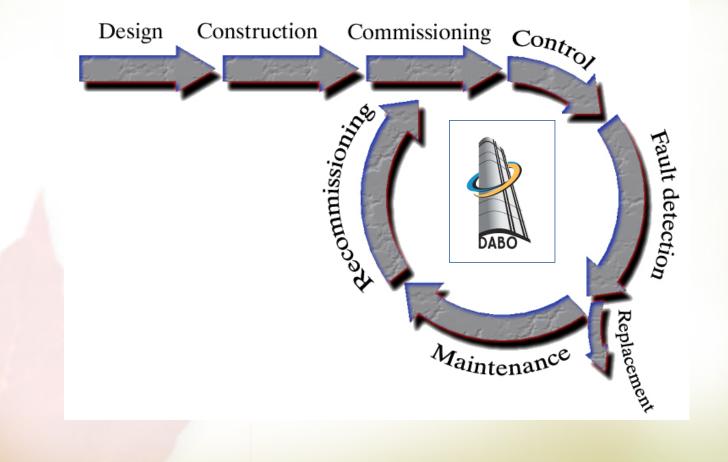
Building operation


Construction Expenditures %

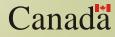
Canada


Ressources naturelles Natural Resources Canada

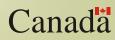



Recommissioning

- Optimisation of the operation
- Systems not equipment
- No capital expenses (No equipment replacement)
- Paybacks of 2 years or less
- Persistence of benefits maintained using DABO (Diagnostic Agent for Building Operators)

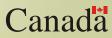


Canada


Ressources naturelles Natural Resources Canada

Why recommissioning – Government perspective

- Prolong equipment life
- Improved indoor environmental quality \rightarrow improvements in productivity
 - 0.25% increase in productivity \rightarrow \$432M
- ◆ 5% to 30% reductions in energy consumption
- Lowering of greenhouse gas emissions
 - 4.4Mt CO2 equivalent with operating cost savings estimated at \$776M



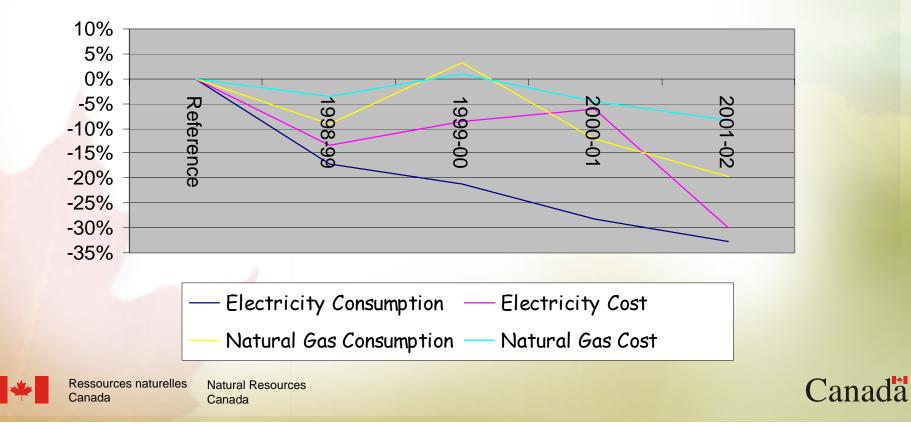
Why recommissioning – User perspective

Determining Factors in th	ne Decisi	on to Retro-commission a Building	
Scale 1 to 7:	7 indicat	es greater importance	
United States		Canada	
<u>Factor</u>	<u>Rate</u>	<u>Factor</u>	Rate
Minimizing Operatng Costs	6.2	Assure System Reliability	6.0
Assure System Reliability	6.0	Demonstrate Code Compliance	6.0
Save Energy	5.9	Mnimize Operating Costs	5.8
Demonstrate Code Compliance	5.9	Save Energy	5.6
Maximize Occupant Safety	5.7	Maximize Occupant Safety	5.6
Minimize Liability	5.6	Minimize Liability	5.6
Assure Occupant Comfort	5.5	Assure Occupant Comfort	5.3
Owner Requirement	5.0	Owner Requirement	5.3
Other	N/A	Other	N/A

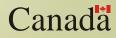
NEMI Retro-commissioning Existing Building Inventory

Why recommissioning – Owner/operator perspective

					ssioning ost	Energ sav		
Building name of location; type	Area (ft ²)	Ending Date	Pre-comm. Energy Cost (\$/ft²/yr)	Total \$	\$/ft ²	\$/yr	% of total cost	Simple payback (years)
Oregon; office	278,000	1995	1.25	12,745	0.05	8,145	2.3	1.6
Citizen's Plaza, Tennessee; Office	250,000	1995	1.81	23,967	0.1	42,045	9.3	0.6
Colorado; retail	122,000	1995	0.88	11,310	0.09	13,779	12.8	0.8
Massachusetts; retail	107,000	1995	2.4	12,801	0.12	8,042	3.1	1.6
High-tech research facility	44,000	1984	4.35	14,000	0.32	59,540	31.3	0.2
203 N. Lasalle St.; office	623,000	1995	1.28 ^b	80,000	0.3	150,000 ^c	18.8	0.5
Capitol Bulding; computer facilities/office	282,499	1996	1.63	24,000	0.08	88,812	19.2	0.3
S.F. Austin Building & CP; computer facilities/office	470,000	1993	1.24	28,000	0.06	30,385	5.2	0.9
John H. Reagan Building; computer facilities/office	169,756	1996	1.56	24,000	0.14	50,680	19.2	5
Archives Building; library	120,000	1996	0.37	24,000	0.2	9,867	22.5	2.4
Starr Building; office	99,000	1995	2.16	20,000	0.2	48,000 ^e	22.5	0.4
Capitol Extension; computer facilities/office	592,781	1996	0.84	28,000	0.05	89,758	18	0.3
School of Public Health; medical institution	233,738	1994	1.62	24,000	0.1	63,502	16.8	0.4
Medical School Building; medical institution	887,187	1994	3.16	28,000	0.03	879,101	31.4	0



A practical guide for commissioning existing buildings.

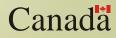

Why recommissioning – Our Director's perspective

CETC-Varennes Impact of Improved Operation Consumption & Cost

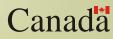
- ♦ Planning phase
- Investigation phase
- Implementation phase
- Project hand-off phase

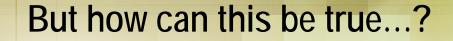

- Planning phase
 - Define project objectives
 - Choose the team
 - Review building documentation and energy bills
 - Develop Commissioning plan

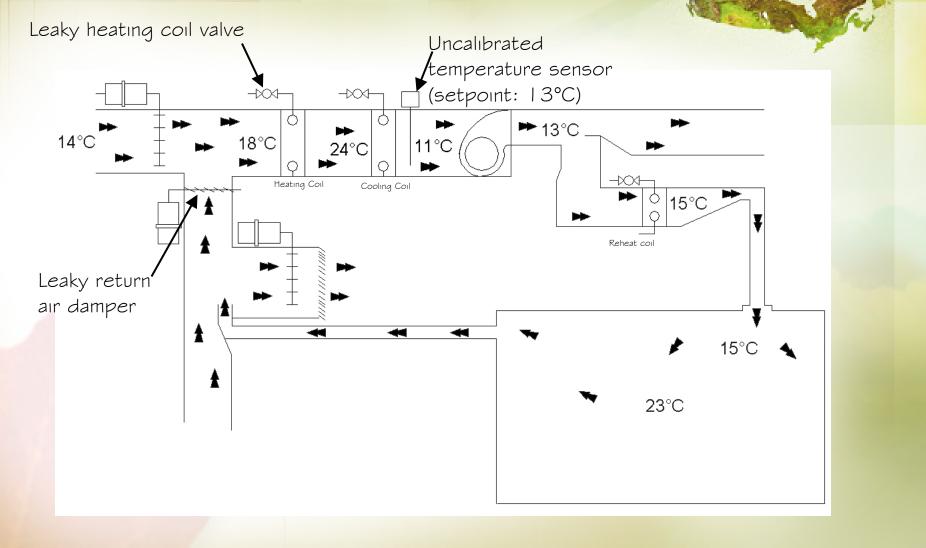
- Investigation phase
 - Site assessment
- - Install DABO
 - Develop and carry out diagnostic tests and system monitoring
 - Analyse monitoring results
 - Develop list of deficiencies
 - Select the most cost effective opportunities


- Implementation phase
 - Implement improvements identified in investigation phase
 - Retest and re-monitor to confirm the results
 - Verify, if necessary, the improvements carried out during the investigation phase
 - Review the energy consumption reduction estimates

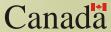
- Project Hand-off Phase
 - Prepare and present final report
 - Ensure that the use of DABO is well understood by the operators so as to maintain the recommissioning benefits





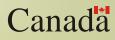

Recommissioning example

- Two identical buildings
 - EESB
 - ETB : Low-E windows; T-8 lighting system; energy efficient HVAC system; LED exit lights
- ...2 years later: Surprise!
 - Complaints skyrocketed in ETB
 - AND 32% more energy consumed
- Correction of problems: manual setting; simultaneous heating and cooling
- Result:comfort related complaints dropped; energy consumption reduced



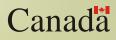
Obstacles

- Few experienced recommissioning providers
- Recommissioning procedures not known
- Awareness of building owners/managers
- Difficulty in quantifying recommissioning benefits, especially those associated with comfort and productivity



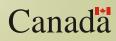
Next Steps

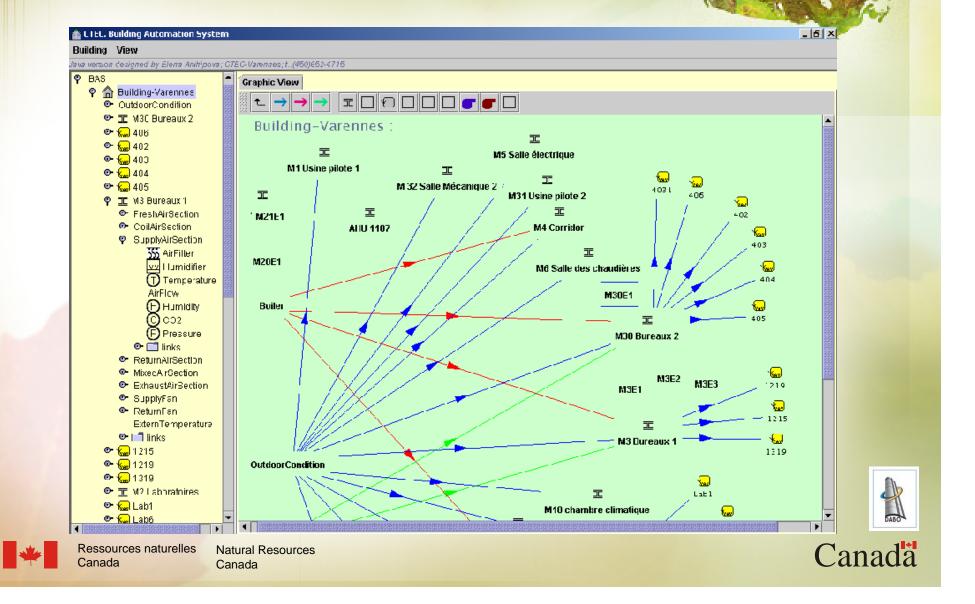
- Develop the strategy to introduce recommissioning to the building industry
- Develop Canadian case studies to demonstrate the impact of recommissioning and show its potential to building owners and managers
- Develop training tools for recommissioning providers and building operators
- Encourage the provincial and federal governments as well as the utilities to develop a global approach for improving and optimising building operation.



Incorporating recommissioning in the building's life cycle can have:

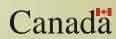
- A significant impact on the occupants' productivity
- A substantial extension of equipment life
- An impact on GHG reduction of as much as 4.4 Mt of CO2 equivalent, and
- ♦ A significant impact on the building operating costs a payback of less than 2 years





Ressources naturelles Natural Canada Canada

Natural Resources Canada


DABO Interface

DABO – Results – VAV Boxes

Graphic View M30 Bureaux 2 FDD report						VAV Faults AHU FDD report																			
	Sy	/stem:				•	FI	oor:			•	Orier	ntatio	n:			▼	Date	e: 02	/ 07 /	2003		C)etails	;
N	lame	System	Floor	Orientati		Averages for each hour of the day																			
		ojotom	11001	onontatili		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
	405	M30 Bur	1		Т	22,7	22,7	22,6	22,5	22,5	22,3	22,2	21,2	21,1	22,6		23,3	22,9	22,7	22,7	· ·	22,3			
					SP	,_	22,0	22,0	,-	22,0	22,0	22,0	23,0		23,0			,-	23,0				-	22,0	
1	1215	M3 Bure	1	P-W	T SP	23,8 22.0	-			23,8 22,0			_		-	21,9 22.0					<u> </u>	22,3 22.0	· · · ·	23,5	
					T	22,0	22,0	22,0	22,0	22,0	22,0		21.1			21,0			_	,-	,-			,-	22
1	1219	M3 Bure	1	P-W	SP	21,0	21,0	21,0	21,0	21,0	21,0	21,0	21,0		<u> </u>	21,0		· · ·	21,0	21,0	<u> </u>	· ·		21,0	2'
1	1319	M3 Bure	1	P-W P-E C	Т	23,6	- C			23,4				· · ·					-				_	24,4	
					SP	24,0			24,0		24,0		24,0	24,0	_	24,0	24,0		23,4	23,0	<u> </u>			23,0	23
L	_ab1	M2 Labo	1	с	T SP	23,5 22.5	23,5 22.5	23,5 22.5		23,5 22.5	23,4 22.5	23,4 22.5	23,2 22.5	22,4 22.5	22,4 22.5	22,3 22.5	22,2	22,2 22.5	22,1 22.5	22,2 22.5	22,2 22.5			<u> </u>	23
					T			,_	,_	,_	,_	,_	,_	24.6	,_		24,2	LLIO	24.0	,_	,-			23,9	24
L	_ab6	M2 Labo	1	С	SP		23,0	23,0		23,0	23,0					23,0			23,0	23,0				23,0	
	ab2	M2 Labo	1	с	Т	<u> </u>	<u> </u>		· ·	24,1		· · ·			· ·	22,9		22,7	22,7	22,6	_	-		23,1	23
					SP					24,0						24,0		24,0	24,0	24,0	24,0	24,0	24,0	24,0	24
L	_ab3	M2 Labo	1	С	T	23,8	23,8	23,8	23,8	23,8	23,8	23,8	23,7	23,0	22,9	22,8	22,6	22,5	22,5	22,6	22,7	22,7	22,7	23,0	2:
Fa	ult lege	end				◀ 333	0000000	000000	0000000	0000000		0000000		000000	0000000	000000		000000	0000000		88				
			em not run	ning				Т	emp.	Setpo	<mark>aint n</mark>	ot sat	isfied						Air	flow	unsta	ble			
		Airflow Se								w Se										Nor	mal				
																									_


DABO

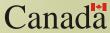
DABO – Results – Air Handling Unit

Graphic View AHU FDD report

		M3 E	Bureau	ıx 1											•	Da	te: 03	8 / 09	/ 200:	3		Detai	S
			Averages for each hour of the day																				
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
aults detected		0	3	3	3	1	1	1	1	4	3	3	4	3	3	3	2	2	2		4	4	4
oint in manual		31																					
ensor limits		32																					
	Outside	2																					0000
emperature sensors	Supply	3																					
emperature sensors	Mixed	4																					
	Return	5																					
	Return	6																					
lumidity sensors	Supply	7																					
	Outside	8																					
	Outside	37																					
:02 sensor	Supply	35																					
	Return	36																					
Pressure sensor	Supply	100																					
1000010 001001	Filter	101																					
low measurement	Supply	102																					
ow measurement Return		103																					
	Supply	104																					•
	jnostic Cooling			99999999				Off Heati		0000000	000000	2000000		Fr	ee co			witho		echani Jing	ical c	oolinį	

DABO Installation sites

Adda ESC



211100001011000001110001100

Canada

Ressources naturelles Natural Resources Canada

